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ABSTRACT 

Our understanding of pre-Cretaceous dinosaur reproduction is hindered by a scarcity of evidence within 
fossil records. Here we report three adult skeletons and five clutches of embryo-containing eggs of a new 

sauropodomorph from the Lower Jurassic of southwestern China, displaying several significant reproductive 
features that are either unknown or unlike other early-diverging sauropodomorphs, such as relatively 
large eggs with a relatively thick calcareous shell formed by prominent mammi l lary cones, synchronous 
hatching and a transitional prehatching posture between the crocodilians and living birds. Most significantly, 
these Early Jurassic fossils provide strong evidence for the earliest known leathery eggs. Our comprehensive 
quantitative analyses demonstrate that the first dinosaur eggs were probably leathery, elliptical and relatively 
small, but with relatively long eggshell units, and that along the line to living birds, the most significant 
change in reptilian egg morphology occurred early in theropod evolution rather than near the origin of Aves. 
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Saurischia Seeley, 1887 
Sauropodomorpha von Huene, 1932 
Qianlong shouhu gen. et sp. nov . 

Etymology 
The genus name is derived from Mandarin Chinese 
Qian (an alternative name for Guizhou Province 
where the fossils were collected) + long (‘dragon’); 
the species name shouhu means ‘guarding’ in Chi- 
nese, referring to the associated preservation of adult 
skeletal fossils and embryo-containing egg fossils. 

Holotype 
GZPM VN001 is a partial and semi-articulated skele- 
ton (Fig. 1 ), though the partial skull and mandible 
are preserved 30 m western to the postcranial skele- 
ton ( Supplementary Fig. S1 ). It is probably an adult 
individual given the closed neurocentral sutures of 
all preserved vertebrae. 

Referred specimens 
The specimens comprise two partial semi- 
articulated skeletons (GZPM VN002 and 
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NTRODUCTION 

ur understanding of dinosaur reproductive biology
as greatly improved due to the discoveries of nu-
erous reproduction-related fossils and analyses of
ata sets compiled from both fossil and neontologi-
al data [ 1 –9 ]. However, fossils relating to dinosaur
eproduction are mostly known from Cretaceous de-
osits, which has sparked debates on whether the
arity of dinosaur eggs in pre-Cretaceous deposits
s a preservation/collection artifact or a true evo-
utionary signal indicating the delayed appearance
f thick-shelled eggs, or even hard-shelled eggs, in
inosaur evolution [ 2 , 3 ]. Here we report some ex-
eptional new dinosaur fossils (Figs 1 and 2 and
upplementary Figs S1 –S3 ) significant for recon-
tructing dinosaur reproduction evolution, and par-
icularly for testing the views mentioned above. 

ESULTS AND DISCUSSION 

ystematic paleontology 
inosauria Owen, 1842 
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Figure 1. Skeletal morphology of Qianlong shouhu . Skeletal silhouettes of the (a) adult and (b) embryo showing preserved 
bones (in gray) and standing postures. (c) Skull photograph and (d) line drawing in right lateral view, (e) maxillary teeth in 
right lateral view and (f) right pes in posterior view of GZPM VN001 (adult). (g) Skull normal image and (h) transparency image 
showing cheek teeth in left lateral view of GZPM VN004-2. (i) 3D reconstruction of the embryo GZPM VN006-1 showing the 
prehatching posture, with skull elements in purple color; axial skeleton in green; scapula, forelimb and hindlimb in blue. an, 
angular; de, dentary; emf, external mandibular fenestra; gr, groove; hy, hyoid bone; ma, maxilla; n, nasal; pm, premaxilla; ri, 
ridge; sa, surangular. 
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03; Supplementary Fig. S2 ) and five clutches
f embryo-containing eggs (GZPM VN0 04-0 08;
ig. 2 and Supplementary Fig. S3 ). All fossils
GZPM VN0 01-0 08) are housed at the Guizhou
rovincial Museum (GZPM). 

ocality and horizon 
he locality and horizon are Zhuanpo, Pingba Dis-
rict, Anshun City, Guizhou Province, southwestern
Page 2 of 13 
China and the Lower Jurassic Zhenzhuchong Mem- 
ber (possibly in Sinemurian), Ziliujing Formation 
[ 10 , 11 ] ( Supplementary Fig. S1a –c). 

Diagnosis 
Qianlong differs from other sauropodomorphs in the 
following character states (autapomorphies marked 
by *): a shallow concavity at the base of the pre-
maxi l la nasal process; relatively straight teeth with 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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Figure 2. Egg clutch, eggs and eggshell microstructure of Qianlong shouhu . (a) Egg clutch GZPM VN005 preserving 16 eggs 
and a fragmentary bone. (b) The embryonic-skeleton-containing egg GZPM VN006-1. (c) Close-up of eggshell of GZPM VN004- 
1 showing cracked eggshell. (d and e) Radial thin sections and (h) line drawing of (d) showing the entire eggshell microstruc- 
ture. (e, arrow) The eggshell covered by secondary calcite is thinner. (f) Radial thin section under polarized light and (g) Inverse 
Pole figure map under EBSD analysis showing the mammillary cones with nucleation center (yellow arrows). (i) Tangential 
thin section near the outer surface under PLM and (j) its line drawing showing interlocking eggshell units and elongated and 
round pores (arrows). (k) Tangential thin section near the inner surface under TLM and (l) its line drawing showing isolated 
eggshell units with nucleation center (arrows). cv, caudal vertebrae; es, eggshell; fe, femur; fi, fibula; Ii, left ilium ti, tibia. 
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abiolingually asymmetrical crowns and without
enticles; jaw articulation lower than dentary dor-
al margin; a short retroarticular process; a very
mall external mandibular fenestra; well-developed
utritive foramina on the maxi l lary and dentary, the
idth of Metacarpal I being greater than its length;
etatarsal V with a strongly expanded proximal
Page 3 of 13 
end that is four times the mediolateral width of the
distal end and with a small bulge on the lateral mar-
gin * (Fig. 1 and Supplementary Fig. S2 ). 

Description and comparisons 
The skull and mandible (Fig. 1 ) share similar gen-
eral morphology to those of other early-diverging 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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auropodomorphs [ 12 ]: the snout is relatively long,
he large external naris is positioned anteriorly and
entrally, and the dentary has a slightly down-turned
nterior end and contributes to more than half of
he length of the mandible. There are also a number
f derived cranial features, including a relatively
osteriorly positioned nasal with a short anteroven-
ral process (also in Lufengosaurus [ 13 ], Mussaurus
nd other sauropodiforms [ 14 ]), a very small ex-
ernal mandibular fenestra (also in Yizhousaurus
 15 ], Riojasaurus [ 16 ] and many sauropodiforms),
 high coronoid eminence and ventrally offset jaw
rticulation (also in Lufengosaurus , Jingshanosaurus
 17 ], Yizhousaurus and most sauropodiforms),
elatively short surangular and angular (also in
izhousaurus [ 15 ]), angular posteriorly posi-
ioned relative to the mandibular fenestra (also
n Lufengosaurus and most sauropodiforms) and
abiolingually asymmetrical tooth crowns with-
ut marginal denticles (also in Yunnanosaurus ,
risosaurus and many sauropodiforms) and with sev-
ral longitudinal ridges on the labial surface (also in
huxiongsaurus [ 18 ]). 
In the postcranial skeleton, morphologi-

al features shared with other early-diverging
auropodomorphs ( Supplementary Fig. S2 ) in-
lude three sacral vertebrae; an elongated, laterally
rched scapula; a relatively short humerus with a
ell-developed deltopectoral crest; a very stout
etatarsal I; a relatively smal l i lium with a short
re-acetabular process and a long pubic pedun-
le; a long pubis with a large obturator foramen;
 long ischial shaft with a subtriangular cross sec-
ion; and a robust sigmoid femur longer than the
ibia. Derived postcranial features include anterior
orsals with a transversely expanded dorsal end
f the neural spine (also in Yizhousaurus [ 15 ] and
ome other sauropodiforms), short anteriormost
audals (also in sauropods [ 12 ]), a short manus
also in Yizhousaurus [ 15 ], Jingshanosaurus [ 19 ]
nd many other sauropodiforms [ 20 ]), robust
anual digits (also in Lufengosaurus [ 21 ] and some
auropodiforms such as Yizhousaurus and Mussaurus
 22 ]), a relatively long pubic apron, Pedal Ungual
 longer than all nonterminal phalanges (also in
ingshanosaurus [ 19 ] and other sauropodiforms
 23 ]) and a short Metatarsal V with a strongly
xpanded proximal end and a lateral bulge [un-
nown in any other sauropodomorphs (Fig. 1 f)]
see Supplementary Data for more description and
omparisons). Our phylogenetic analysis places
ianlong as the sister taxon to Yunnanosaurus near
he base of Sauropodiformes ( Supplementary 
ig. S4 ). 
Page 4 of 13 
Embryos and growth 

Six embryos from two egg clutches display long 
bones through either direct exposure or CT imag- 
ing, and have a large medullary cavity and a very 
spongy cortex. Microstructures such as numerous 
primary cavities and abundant osteocyte lacunae 
( Supplementary Fig. S5 ) suggest fast growth [ 24 ].
These embryos are probably in their late develop- 
mental stage as indicated by nearly full occupation 
of the egg space by the skeleton (Fig. 1 i). They dis-
play a transitional prehatching posture between the 
crocodilians and living birds: the head is near the 
pole and the hindlimbs are only partially crouched 
(Fig. 1 i) as late-stage embryos of Massospondylus 
[ 25 ] and extant crocodilians [ 26 , 27 ], but the back
is curved along the pole and the hip is near the
central portion of the egg as in those of early [ 28 ]
and living birds [ 29 ] as well as possibly ovirap-
torids [ 30 ] and troodontids [ 31 ] (but see [ 27 ] for
a different interpretation of oviraptorid prehatch- 
ing posture). All embryos are similar in the ossifica- 
tion degree and size (Fig. 3 , Supplementary Fig. S6 
and Supplementary Table S1 ), suggesting that Qian- 
long has a synchronous hatching strategy and syn- 
chronous breeding in this colonial nesting site. 

The embryos display several characteristics that 
are shared with their adult counterparts (Fig. 1 g–
i and Supplementary Fig. S6 ): the maxi l lary dor- 
sal process deflected distinctly from the anterior 
ramus at a large angle ( ∼70 degrees), the den- 
tary proportionally long ( ∼60% of the mandibu- 
lar length) and posteriorly bifurcated, the external 
mandibular fenestra proportionally small, four pre- 
maxi l lary teeth, relatively straight tooth crown, well- 
developed nutritive foramina on the maxi l lary and 
dentary, the pubic apron long ( > 30% of the pu-
bic length), the ilium with a short pre-acetabular 
process and a relatively long postacetabular pro- 
cess, a smooth convex dorsal margin, a long pu- 
bic peduncle and the prominent plate-like femoral 
fourth trochanter relatively proximally and medially 
positioned. 

However, the embryos also display some dif- 
ferences from the adults. Some of these differ- 
ences are ontogenetic variations also seen in other 
sauropodomorphs [ 14 , 32 , 33 ], including propor- 
tionally longer skull and mandible, a more vertical 
anterior margin of the premaxi l la and fewer teeth in
the embryos. Other differences, such as maxi l lary 
anterior ramus shallow and subtriangular in the em- 
bryos but deep in adults, the presence in the embryos 
but absence in the adults of a narrow ridge along 
the maxi l lary posterodorsal ramus (Fig. 1 g) and 
retroarticular process long in the embryos but short 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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Figure 3. Cross sections of the limb bones of Qianlong embryos derived from CT reconstruction. (a and b) GZPM VN006-2 
showing that the forelimb is only slightly thinner than the hindlimb in Qianlong as indicated by the cross-section data. (a) 
Humerus in anterior view. (b) Femur in posterior view. (c) GZPM VN004-2 femur in posterior view. GZPM VN004-2 is similar 
in size to GZPM VN006-2 as indicated by the cross-section data. 
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n the adults, have not been reported previously in
he ontogenetic series of other sauropodomorphs
 14 , 32 , 33 ]. 
Some proportional features ( Supplementary 

able S1 ) indicate that the embryos have pro-
ortionally longer forelimbs and larger shoulder
irdles than the adults—a phenomenon is also
een in Massospondylus and Mussaurus [ 34 ]. Limb
ross-section data display a similar pattern: humeral
ross section is close in size to the femoral one in
mbryos (Fig. 3 ), but the difference is huge in adults.
ianlong thus may have been quadrupedal at hatch-
ng. Ontogenetic shifting from quadrupedalism to
ipedalism has been proposed for early-diverging
auropodomorphs based on data gathered in both
imb proportions [ 25 ] or the body’s center of
ass [ 35 ]. Our allometric growth analysis pro-
ides support for this proposal, and specifically
he humerus displays a negative allometry in the
rowth of early-diverging sauropodomorphs but
ear isometry or even a positive allometry in the
rowth of sauropods (Fig. 6 a). This suggests that
arly-diverging sauropodomorphs are similar to
auropods in body plan at their early ontogenetic
tages, but differ in the growth pattern, which leads
o the different body proportions at later ontogenetic
tages. 
Page 5 of 13 
Nesting and eggs 
The five egg clutches containing the same type of 
eggs are distributed in a small area of ∼15 m 

2 and the
three adult/subadult skeletons are preserved with a 
distance to the egg clutches ranging from 1 to 3 me-
ters. All fossils except GZPM VN002 (yellow surface 
color) are from purple silty mudstone and the latter 
from a layer of purple siltstone ∼0.7 m above the for-
mer fossil bed layer ( Supplementary Figs S7 –S11 ).
The fossil-bearing beds are featured by massive 
fine brown mudstone, abundant calcium carbonate 
nodules, along with slickensides and weak color 
mottling, indicating that they are paleosol origins 
and floodplain deposits of low energy (see more 
details in Supplementary Data ). The general tapho- 
nomical and sedimentary features are similar to 
those of the fossil-bearing beds of several other 
early-diverging sauropodomorphs [ 36 , 37 ] that 
have been suggested to possess such reproductive 
behaviors as colonial nesting and site fidelity. The 
preserved Qianlong adult skeletons display a pros- 
trating posture similar to that of some Plateosaurus 
fossils that were interpreted as resulting from 

miring [ 38 ]. 
The preserved egg clutches vary in size, with the 

smallest clutch containing 3 eggs and the largest 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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ith 16 eggs (Fig. 2 a and Supplementary Fig. S3 ),
nd are much smaller in size than the largest known
lutch of Massospondylus and Mussaurus containing
4 eggs and 30 eggs, respectively [ 36 , 39 ], though
he possibility of incomplete preservation leading
o the small clutch sizes could not be dismissed.
ost eggs are general ly el liptical in outline. How-
ver, many small pits are observed on the outer sur-
ace, leading to a somewhat irregular shape of the
ggs (Fig. 5 c). Qianlong eggs have a diameter of
11.5 cm × 9.4 cm, which is more similar in size

o those of sauropods (ranging from 9 to 23 cm in
gg diameter) [ 1 , 40 ] than to those of other early-
iverging sauropodomorphs such as Massospondylus
nd Mussaurus ( ∼6–7 cm in egg diameter) [ 25 , 41 ]. 
The eggs have a calcareous eggshell layer of

60 ± 26 μm on average ( n = 30, ranging from
15 to 230 μm, Fig. 2 c–e). The irregular outer
urface indicates eggshell weathering and thus the
riginal Qianlong eggshell possibly is even thicker.
ianlong thus has a calcareous eggshell that is
onsiderably thicker than that of other known early-
iverging sauropodomorphs such as Massospondylus
80–100 μm) [ 2 ], much thicker than the calcare-
us layer of all known soft-shelled eggs (usually
 60 μm) [ 42 ], but much thinner than that of most
ther non-avian dinosaur eggs (400–4750 μm)
 43 ]. 
In radial thin sections, the eggshell consists of in-

erlocking columnar eggshell units with a height-to-
ide ratio of ∼2 : 1 to 5 : 1 (Fig. 2 d, e and h) and the
oundaries between the interlocking eggshell units
re irregular (Fig. 2 f and g). Round and elongated
ores occasionally appear between adjacent eggshell
nits (Fig. 2 i and j). Quantitative analysis indicates
hat Qianlong had relatively high eggshell porosity
 Supplementary Table S5 ) and, by combining the
gg mass data, our analysis indicates that Qianlong
ad covered nests ( Supplementary Fig. S13 ) as in
ost non-pennaraptoran archosaurs [ 44 ]. Towards
he inner surface, the eggshell units become isolated
rom each other (Fig. 2 k and l). At the inner sur-
ace of the eggshell, the mammi l lary cone exhibits
 radial arrangement of calcite grains and a small
ounded nucleation center (Figs 2 d–h, k, l and 4 a,
), as in turtles and all other dinosaurs including
irds [ 45 ] ( Supplementary Figs S14 and S15). Elec-
ron backscatter diffraction (EBSD) imaging shows
hat the mammi l lary cones continue by large vertical
rism-shaped calcite grains in the outer portion of
he eggshell (Fig. 2 g) as in typical dinosaur eggshells
e.g. Placoolithus , Supplementary Fig. S14f); scan-
ing electron microscope (SEM) imaging reveals
hat there are numerous tiny vesicles in the calcite
rystals (Fig. 4 b), resembling those of Cretaceous di-
osaur eggshells [ 46 , 47 ]. 
Page 6 of 13 
The presence of a calcareous layer is further 
supported by our chemical analyses. Energy- 
dispersive spectroscopy (EDS) indicates that 
Qianlong eggshell mainly consists of C, O and 
Ca ( Supplementary Table S12 ) and Raman spec- 
troscopy also detects the calcite signal from the 
Qianlong eggshell (Fig. 4 c and d). However, or- 
ganic matters are detected in the eggshells and the 
surrounding matrix and, interestingly, the Raman 
spectra obtained from the Qianlong eggshell are 
similar in calcite and organic matter signal patterns 
to those from Mussaurus eggshell [ 3 ]. This suggests 
that the signal pattern of organic matters revealed 
from Mussaurus eggshell [ 3 ] is not reliable evi- 
dence for soft-shelled eggs. The transmitted light 
microscopy (TLM), polarized light microscopy 
(PLM) and EBSD images confirm that Qianlong 
eggshell resembles other dinosaur eggshells at a 
microstructural level, though the microstructure is 
less well preserved in Qianlong eggshell than in most 
Cretaceous dinosaur eggs that have been studied 
from this perspective. 

There are several lines of evidence supporting the 
identifications of the eggs of Qianlong and proba- 
bly other early-diverging sauropodomorphs as leath- 
ery ones. First, their eggs have a shell thickness that 
is similar to that of extant leathery eggs (usually 
70–200 μm) (see also Supplementary Table S8 ). 
Second, Qianlong eggs display sharp edges of bro- 
ken shells (Fig. 2 c), as in some leathery eggs of ex-
tant turtles and hard-shelled eggs (Fig. 5 b and c), 
and they further resemble leathery eggs in having 
small eggshell pieces when eggs are broken (Fig. 
5 b). Finally, our statistic analyses of relative eggshell 
thickness (Fig. 5 f) and the relative size of eggshell 
pieces (Fig. 5 g) demonstrate that Qianlong eggs are 
more similar to leathery eggs than to either hard- 
shelled eggs or soft-shelled eggs. In summary, the 
relatively thin eggshell thickness compared with the 
egg mass, the rugose egg surface, the slightly irreg- 
ular egg shape and the strongly pieced eggshells 
provide strong support for the leathery nature of 
eggs of Qianlong and probably other early-diverging 
sauropodomorphs (Fig. 5 and Supplementary Fig. 
S3c ). 

Evolution of selected reproduction 

features 
To better understand the evolution of avian repro- 
ductive biology, we performed ancestral-state recon- 
struction (ASR) analyses to trace the evolution of 
egg size and shape as well as eggshell type, mi- 
crostructure and thickness. The new data sets were 
compiled from several recent studies [ 2 , 3 , 6 , 48 ] but

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data


Natl Sci Rev , 2024, Vol. 11, nwad258 

Figure 4. Microstructure and Raman spectra of Qianlong eggshell. (a) Radial section under SEM showing the nucleation 
centers of two eggshell units (arrows). (b) Radial section under SEM showing numerous cavities (white arrows) and tiny 
vesicles (yellow arrows) throughout the whole eggshell. (c) Radial thin section of the eggshell under normal light showing 
eggshells (es) and nucleation centers (yellow arrows). (d) Raman point spectra were acquired at the positions labeled with 
the red dots in (c): 1. Epoxy resin; 2. Secondary calcite on the outer surface of the eggshell; 3, 4. Eggshell; 5. Organic matters 
in sediments; 6. Calcite in sediments. 
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ith significant expansion, and they contain 210 di-
psid taxa with both ascertained systematic posi-
ions and relevant reproduction data for our analyses
Fig. 6 and Supplementary Figs S16 and S17 ). 
Our egg-size ASR analyses show that the evo-

ution of relative egg size (egg volume relative to
dult body mass) displays a decreasing trend from
he base of the Diapsida to that of the Saurischia,
ollowed by an egg-size-increase trend from early
heropods to the crown bird node (Fig. 6 c and
upplementary Figs S18 and S19 ). The former
rend leads to plesiomorphical ly smal ler eggs in Di-
osauria (with the exception of turtles) and the lat-
er to plesiomorphically larger eggs in Aves com-
ared with all other diapsid groups, though the
ost significant egg-size increase occurred early in
heropod evolution. Meanwhile, an egg-size-increase
rend is also seen in some lineages of lepidosaurs, tur-
les, crocodilians, pterosaurs, ornithischians, ovirap-
orosaurians, palaeognaths and neognaths, though
nly the trend in the oviraptorosaurian and pa-
eognath evolution has been relatively well sup-
orted by the data. An egg-size-decrease trend has
Page 7 of 13 
also been detected in some lepidosaur lineages and 
in the evolution of sauropodomorphs and neog- 
naths, leading to some of the smallest eggs found 
in some sauropodomorph clades, among the known 
archosaurian clades. 

Egg-shape evolution displays a different pattern 
from size evolution. Egg shape (measured by using 
the elongation index) is generally conservative 
along the line to living birds in diapsid evolution: 
nearly all nodes (e.g. the Diapsida, Archelosauria, 
Archosauria, Ornithodira and Aves) except sev- 
eral non-avialan dinosaurian nodes display an 
egg elongation index of 0.13–0.15 (Fig. 6 d and 
Supplementary Figs S20 and S21 ). This lack of 
shape change is also seen in most crown bird clades,
in stark contrast to most reptilian groups and their 
subclades that display either a much smaller or 
a much larger egg elongation index (Fig. 6 d and 
Supplementary Figs S20 and S21 ). The former is 
seen in sauropodomorphs, ornithischians, turtles 
and a few lepidosaur clades, which have nearly 
rounded eggs, and the latter is present in non-avialan 
theropods, pterosaurs, crocodilians and some 
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epidosaur clades, which show much more elon-
ated eggs. The theropod egg elongation leads to
he most elongated diapsid eggs in oviraptorosaurs,
ut would later be reversed to the plesiomorphic,
lightly elongated eggs that are inherited by all crown
ird clades. 
Similarly, the relative eggshell thickness (eggshell

hickness relative to egg volume) also displays a rel-
tively complex evolutionary pattern (Fig. 6 e and
upplementary Figs S22 and S23 ). Along the line to
xtant birds in archosaur evolution, there is an evo-
utionary trend of eggshell-thickness decrease from
he base of the group to that of the Saurischia, fol-
owed by a significant eggshell-thickness increase
arly in theropod evolution. An evolutionary trend of
ggshell-thickness decrease is also seen in neognaths,
aleognaths, enantiornithines, some turtle lineages
nd some lepidosaur lineages whereas the reverse is
Page 8 of 13 
seen in sauropodomorphs, ornithischians, some lin- 
eages of oviraptorosaurian theropods, crocodilians, 
turtles and lepidosaurs. 

Although the homologous relationships of diap- 
sid eggshells are highly debated [ 48 , 49 ], the eggshell
units are widely accepted to be the basic components 
of the calcareous shell layer [ 50 ]. Thus, the eggshell
unit evolution is key to our understanding of diapsid 
egg evolution. Our ASR analyses of the eggshell- 
unit-e longation index (EI, the ratio of eggshell unit 
length to width) show that there is an evolutionary 
trend of eggshell unit elongation from the base of 
Archelosauria to that of Pennaraptora, and along 
some lineages of neognath and paleognath birds, 
oviraptorosaurian theropods, sauropodomorphs 
and turtles. Meanwhile, an opposite trend is present 
in enantiornithines and some paleognath, neog- 
nath, turtle, crocodilian and sauropodomorph 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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ineages (Fig. 6 f and Supplementary Figs S24 and
25 ). Among diapsids, some oviraptorosaurian and
roodontid clades have the most elongated eggshell
nits while some crocodilian and turtle clades have
he shortest ones. 
Extant amniotic eggs are traditionally classi-

ed into soft-shelled, leathery and hard-shelled
Page 9 of 13 
ones [ 45 , 50 –52 ] (see Supplementary Data ), though
this classification oversimplifies the great variety 
of eggshell morphologies [ 4 8 ]. Never theless, a
calcareous layer formed by eggshell units character- 
izes both leathery and hard-shelled eggs, the appear- 
ance of which represents a key event in egg evolu-
tion [ 2 ]. Eggs of early-diverging sauropodomorphs 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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re only known in three species, but are contro-
ersial in their morphologies. The calcareous layer
f Massospondylus eggshells seems to be composed
f columnar structural units, but whether they are
riginal eggshell units is uncertain due to severe
ecrystallization of the eggshells [ 2 ]; the known
ufengosaurus eggshell is composed of crown-shaped
ggshell units with radially arranged calcite crystals,
omparable to the inner portion of the Qianlong
ggshell (Fig. 2 e–h), suggesting that the preserved
ufengosaurus eggshel ls li kely represent eggshell in-
erior with the exterior being weathered away; the
oft-shelled nature of Mussaurus eggs has been in-
erred based on the chemical composition revealed
y Raman spectra [ 3 ], but our comparative chem-
cal data from Qianlong eggs support the argument
hat the chemical evidence for the presence of soft-
helled eggs in Mussaurus needs be re-evaluated
 51 ]. Our eggshell type ASR analyses incorporate
ew data from Qianlong and other key taxa and
re conducted with consideration of temporal and
haracter scoring uncertainty—issues that might
ave affected significantly the ASR analyses [ 48 ].
or example, to consider temporal and character
coring uncertaint y in eggshell t ype ASR, we re-
pectively used 22 different time-scaled trees and
wo different criteria for identifying eggshell types
 Supplementary Data and https://figshare.com/s/
4374b47d33d9 6aef9 63 ). These analyses produced
imilar and robust results, and recovered pterosaurs
s ancestral ly soft-shel led and Archelosauria, Tes-
udines, Archosauria, Avemetatarsalia, Dinosauria
nd Saurischia as ancestrally leathery eggshell in
ost results (Fig. 6 b and Supplementary Figs S26 –
32 ). 
Some results of our analyses are different from

hose of some previous studies [ 4 , 8 , 48 ]. For exam-
le, the first dinosaur eggs were suggested to be either
ard [ 52 ] or soft [ 3 ]; other studies suggest that the
ajor changes in the avian reproduction system have
ccurred incrementally, including an evolutionary
rend of increasing egg size along the line to crown
irds [ 4 , 8 ] and an increasing eggshell thickness after
he Early Jurassic corresponding to an increase in
lobal atmospheric oxygen during the same tempo-
al period [ 2 ]. However, our study provides strong
vidence for the leathery eggs in early-diverging
auropodomorphs and suggests a leathery eggshell
rigin for major diapsid subclades including the Di-
osauria; our study also reveals a complex evolution-
ry history of egg size and eggshell thickness along
he line to crown group birds. Most significantly,
ur analyses indicate that dinosaurs ancestrally had
istinct eggs compared with other reptilian groups,
hich were relatively small, moderately elongated
nd thin-shelled but with moderately elongated
Page 10 of 13 
eggshell units, and probably leathery. Along the line 
to living birds in dinosaur evolution, the most sig- 
nificant change in egg morphology occurred early in 
theropod evolution and stem birds closely resemble 
non-avialan theropods and particularly non-avialan 
maniraptorans in egg morphology. Except for rel- 
atively large egg size, extant birds either inherited 
their theropod ancestral condition (e.g. relatively 
thick eggshell and long eggshell units) or reversed 
to the primitive condition (e.g. relatively short eggs) 
in egg morphology. The discovery of Qianlong and 
our analyses clearly show that the evolution of the 
dinosaur reproduction system is a complex process 
and the evolution of some important reproduction 
features such as egg size and shape and eggshell 
thickness are more likely to have been driven by 
multiple factors rather than by a single factor such as 
phylogeny, development or environment. 

CONCLUSION 

This study reports some exceptional fossils of a new 

early-diverging sauropodomorph dinosaur, Qianlong 
shouhu gen. et sp. nov., from the Lower Juras- 
sic Ziliujing Formation of southwestern China and 
makes several novel findings pertaining to diap- 
sid reproduction biology: (i) The early-diverging 
sauropodomorph Qianlong has relatively large eggs 
with a relatively thick calcareous shell formed 
by prominent mammi l lary cones compared with 
other early-diverging sauropodomorphs, a transi- 
tional prehatching posture between the crocodil- 
ians and living birds, and a synchronous hatch- 
ing pattern. (ii) Qianlong and other early-diverging 
sauropodomorphs have leathery eggs. (iii) ASR anal- 
yses demonstrate that the first dinosaur eggs were 
probably leathery, elliptical and relatively small, but 
with relatively long eggshell units, and that egg shape 
is generally conservative among extant birds and the 
most significant change in reptilian egg morphology 
occurred early in theropod evolution. These findings 
are significant to our knowledge of the reproductive 
biology of diapsids, particularly of dinosaurs. 

METHODS 

Phylogenetic analyses 
We analyse a recently published data set for 
sauropodomorph phylogeny [ 36 ] with Qianlong 
added in Supplementary Table S3 . A total of 80 taxa
and 419 characters were included in the data matrix. 
The analysis was run using TNT V. 1.5 [ 53 ] with the
maximum trees set to 10 0 0 0. All the characters were
equally weighted and 41 additive characters were set 
[ 36 ]. A heuristic search using a new technologies 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad258#supplementary-data
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lgorithm was used, with 100 hits to minimum
ength, followed by tree swapping using TBR (tree
isection reconnection) on the trees in memory (see
etails in Supplementary Data ). 

omputed tomographic scan 

nd 3D reconstruction 

our embryo-containing eggs were scanned using
 Phoenix Vtomex M micro-computed tomogra-
hy scanner at the Yinghua Inspection and Test-
ng Shanghai Company and the Key Laboratory of
ertebrate Evolution and Human Origin of Chinese
cademy of Sciences, IVPP. Scanning parameters
ere set to a tube voltage of 180–200 KV and a
urrent of 100–150 μA with a voxel size of 22.49–
5.044 μm 

3 ( Supplementary Table S13 ). Recon-
truction of radiographs was performed using the
oftware Mimics 17 at the IVPP. 

aman analyses 
n situ Raman microspectroscopy was conducted us-
ng a WITec α300 Confocal Raman system coupled
ith a Peltier cooled EMCCD detector at the State
ey Laboratory of Biogeology and Environmental
eology, China University of Geosciences (Wuhan).
aser excitation was provided at 532 nm with 7.9 mW
f output laser power at the surface of the sample.
ach sample was scanned in the spectral range from
 to 40 0 0 cm 

−1 . The integration time for each spec-
rum was 3 s and the number of accumulations was
0. Software WITec Project Five 5.1 Plus was used to
rocess the Raman spectra. 

llometric growth analysis 
llometric growths of three non-sauropod
auropodomorph species and five sauropod species
ere investigated by using a bivariate plot of the
umeral length relative to the femoral length of 33
ndividuals representing different ontogenetic stages
f these eight species ( Supplementary Table S4 ).
nitary linear regression analyses were performed
o detect the allometric relationships between
he log-transformed humerus and femur in Excel
2016). 

SR analyses 
he sampled taxa cover major reptilian clades, in-
luding crocodilians, birds, non-avian dinosaurs,
terosaurs, turtles, lepidosaurs and choristoderes
 Supplementary Tables S9 and S10 ) and in total the
ata sets include 210 taxa. Here we use two criteria
new scoring and ratio scoring) to do ASR analy-
is for they are widely used in eggshell type defini-
Page 11 of 13 
tion [ 48 ]. We assembled an informal supertree man-
ually in Mesquite v3.6.1 and used hidden Markov 
chain model that considers rate heterogeneity and 
performed ASR analyses of eggshell type under a Hi- 
erarchal Bayesian framework in RevBayes.1.1.1 using 
all rate different model (ARD) under two hidden rate 
classes. Relative egg size and relative eggshell thick- 
ness were determined by using phylogenetic linear 
regression with Log10 transformed data. Residu- 
als taken from the regression models were used to 
indicate the relative egg size and relative eggshell 
thickness. The phylogenetic linear regression analy- 
ses were performed in R 4.1.3 with the package ‘ca-
per’ and Pagel’s Lambda was used to consider the 
phylogenetic signal ( Supplementary Fig. S17 ). Iden- 
tically, we performed ASR on log 10 transformed 
egg EI (ratio of egg long axis to short axis) and
eggshell unit index (ratio of eggshell unit depth to 
w idth) w ith supertrees rescaled by Pagel’s Lambda 
by using the function ‘fastAnc’ (see detailed in 
Supplementary Data ). 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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